EconPapers    
Economics at your fingertips  
 

Assessing perceived organizational leadership styles through twitter text mining

Agostino La Bella, Andrea Fronzetti Colladon, Elisa Battistoni, Silvia Castellan and Matteo Francucci

Journal of the Association for Information Science & Technology, 2018, vol. 69, issue 1, 21-31

Abstract: We propose a text classification tool based on support vector machines for the assessment of organizational leadership styles, as appearing to Twitter users. We collected Twitter data over 51 days, related to the first 30 Italian organizations in the 2015 ranking of Forbes Global 2000—out of which we selected the five with the most relevant volumes of tweets. We analyzed the communication of the company leaders, together with the dialogue among the stakeholders of each company, to understand the association with perceived leadership styles and dimensions. To assess leadership profiles, we referred to the 10†factor model developed by Barchiesi and La Bella in 2007. We maintain the distinctiveness of the approach we propose, as it allows a rapid assessment of the perceived leadership capabilities of an enterprise, as they emerge from its social media interactions. It can also be used to show how companies respond and manage their communication when specific events take place, and to assess their stakeholder's reactions.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/asi.23918

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:69:y:2018:i:1:p:21-31

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635

Access Statistics for this article

More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jinfst:v:69:y:2018:i:1:p:21-31