Female librarians and male computer programmers? Gender bias in occupational images on digital media platforms
Vivek K. Singh,
Mary Chayko,
Raj Inamdar and
Diana Floegel
Journal of the Association for Information Science & Technology, 2020, vol. 71, issue 11, 1281-1294
Abstract:
Media platforms, technological systems, and search engines act as conduits and gatekeepers for all kinds of information. They often influence, reflect, and reinforce gender stereotypes, including those that represent occupations. This study examines the prevalence of gender stereotypes on digital media platforms and considers how human efforts to create and curate messages directly may impact these stereotypes. While gender stereotyping in social media and algorithms has received some examination in the recent literature, its prevalence in different types of platforms (for example, wiki vs. news vs. social network) and under differing conditions (for example, degrees of human‐ and machine‐led content creation and curation) has yet to be studied. This research explores the extent to which stereotypes of certain strongly gendered professions (librarian, nurse, computer programmer, civil engineer) persist and may vary across digital platforms (Twitter, the New York Times online, Wikipedia, and Shutterstock). The results suggest that gender stereotypes are most likely to be challenged when human beings act directly to create and curate content in digital platforms, and that highly algorithmic approaches for curation showed little inclination towards breaking stereotypes. Implications for the more inclusive design and use of digital media platforms, particularly with regard to mediated occupational messaging, are discussed.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/asi.24335
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:71:y:2020:i:11:p:1281-1294
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635
Access Statistics for this article
More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().