Memory model for web ad effect based on multimodal features
Hong Wang,
Yong‐Qiang Song,
Lu‐Tong Wang and
Xiao‐Hong Hu
Journal of the Association for Information Science & Technology, 2020, vol. 71, issue 1, 29-42
Abstract:
Web ad effect evaluation is a challenging problem in web marketing research. Although the analysis of web ad effectiveness has achieved excellent results, there are still some deficiencies. First, there is a lack of an in‐depth study of the relevance between advertisements and web content. Second, there is not a thorough analysis of the impacts of users and advertising features on user browsing behaviors. And last, the evaluation index of the web advertisement effect is not adequate. Given the above problems, we conducted our work by studying the observer's behavioral pattern based on multimodal features. First, we analyze the correlation between ads and links with different searching results and further assess the influence of relevance on the observer's attention to web ads using eye‐movement features. Then we investigate the user's behavioral sequence and propose the directional frequent‐browsing pattern algorithm for mining the user's most commonly used browsing patterns. Finally, we offer the novel use of “memory” as a new measure of advertising effectiveness and further build an advertising memory model with integrated multimodal features for predicting the efficacy of web ads. A large number of experiments have proved the superiority of our method.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/asi.24214
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:71:y:2020:i:1:p:29-42
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635
Access Statistics for this article
More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().