EconPapers    
Economics at your fingertips  
 

Automated novelty evaluation of academic paper: A collaborative approach integrating human and large language model knowledge

Wenqing Wu, Chengzhi Zhang and Yi Zhao

Journal of the Association for Information Science & Technology, 2025, vol. 76, issue 11, 1452-1469

Abstract: Novelty is a crucial criterion in the peer‐review process for evaluating academic papers. Traditionally, it is judged by experts or measured by unique reference combinations. Both methods have limitations: experts have limited knowledge, and the effectiveness of the combination method is uncertain. Moreover, it is unclear if unique citations truly measure novelty. The large language model (LLM) possesses a wealth of knowledge, while human experts possess judgment abilities that the LLM does not possess. Therefore, our research integrates the knowledge and abilities of LLM and human experts to address the limitations of novelty assessment. One of the most common types of novelty in academic papers is the introduction of new methods. In this paper, we propose leveraging human knowledge and LLM to assist pre‐trained language models (PLMs, e.g., BERT, etc.) in predicting the method novelty of papers. Specifically, we extract sentences related to the novelty of the academic paper from peer‐review reports and use LLM to summarize the methodology section of the academic paper, which are then used to fine‐tune PLMs. In addition, we have designed a text‐guided fusion module with novel Sparse‐Attention to better integrate human and LLM knowledge. We compared the method we proposed with a large number of baselines. Extensive experiments demonstrate that our method achieves superior performance.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/asi.70005

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jinfst:v:76:y:2025:i:11:p:1452-1469

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2330-1635

Access Statistics for this article

More articles in Journal of the Association for Information Science & Technology from Association for Information Science & Technology
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-10-29
Handle: RePEc:bla:jinfst:v:76:y:2025:i:11:p:1452-1469