Bayesian Estimation of Fixed Effects Models with Large Datasets
Hang Qian
Oxford Bulletin of Economics and Statistics, 2025, vol. 87, issue 1, 185-194
Abstract:
In hierarchical prior longitudinal models, random effects are estimated by the Gibbs sampler. We show that fixed effects can be handled by a similar Gibbs sampler under a diffuse prior on the unobserved heterogeneity. The dummy variable approach for fixed effects is computationally intensive and has the out‐of‐memory risk, while the Gibbs sampler can reproduce the dummy variable estimator without creating dummy variables, and therefore avoids the memory burden. Compared to alternating projections and other classical approaches, our method simplifies both inference and estimation of the limited dependent variable models with fixed effects. The proposed method is applied to a real‐world mortgage dataset for classification with three‐way fixed effects on banks, regions, and loan purposes.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/obes.12641
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:obuest:v:87:y:2025:i:1:p:185-194
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0305-9049
Access Statistics for this article
Oxford Bulletin of Economics and Statistics is currently edited by Christopher Adam, Anindya Banerjee, Christopher Bowdler, David Hendry, Adriaan Kalwij, John Knight and Jonathan Temple
More articles in Oxford Bulletin of Economics and Statistics from Department of Economics, University of Oxford Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().