Fisher information under Gaussian quadrature models
Antonio Hermes Marques da Silva Júnior,
Jochen Einbeck and
Peter S. Craig
Statistica Neerlandica, 2018, vol. 72, issue 2, 74-89
Abstract:
This paper develops formulae to compute the Fisher information matrix for the regression parameters of generalized linear models with Gaussian random effects. The Fisher information matrix relies on the estimation of the response variance under the model assumptions. We propose two approaches to estimate the response variance: the first is based on an analytic formula (or a Taylor expansion for cases where we cannot obtain the closed form), and the second is an empirical approximation using the model estimates via the expectation–maximization process. Further, simulations under several response distributions and a real data application involving a factorial experiment are presented and discussed. In terms of standard errors and coverage probabilities for model parameters, the proposed methods turn out to behave more reliably than does the ‘disparity rule’ or direct extraction of results from the generalized linear model fitted in the last expectation–maximization iteration.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/stan.12116
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:72:y:2018:i:2:p:74-89
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402
Access Statistics for this article
Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven
More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().