EconPapers    
Economics at your fingertips  
 

Inference in the presence of likelihood monotonicity for proportional hazards regression

John E. Kolassa and Juan Zhang

Statistica Neerlandica, 2023, vol. 77, issue 3, 322-339

Abstract: Proportional hazards are often used to model event time data subject to censoring. Samples involving discrete covariates with strong effects can lead to infinite maximum partial likelihood estimates. A methodology is presented for eliminating nuisance parameters estimated at infinity using approximate conditional inference. Of primary interest is testing in cases in which the parameter of primary interest has a finite estimate, but in which other parameters are estimated at infinity.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/stan.12287

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:stanee:v:77:y:2023:i:3:p:322-339

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0039-0402

Access Statistics for this article

Statistica Neerlandica is currently edited by Miroslav Ristic, Marijtje van Duijn and Nan van Geloven

More articles in Statistica Neerlandica from Netherlands Society for Statistics and Operations Research
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:stanee:v:77:y:2023:i:3:p:322-339