EconPapers    
Economics at your fingertips  
 

Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage

Erik-Jan van Kesteren () and Bergkamp Tom ()
Additional contact information
Erik-Jan van Kesteren: Methodology & Statistics, Utrecht University, Utrecht, Netherlands
Bergkamp Tom: Royal Dutch Football Association, Zeist, Netherlands

Journal of Quantitative Analysis in Sports, 2023, vol. 19, issue 4, 273-293

Abstract: Successful performance in Formula One is determined by combination of both the driver’s skill and race-car constructor advantage. This makes key performance questions in the sport difficult to answer. For example, who is the best Formula One driver, which is the best constructor, and what is their relative contribution to success? In this paper, we answer these questions based on data from the hybrid era in Formula One (2014–2021 seasons). We present a novel Bayesian multilevel rank-ordered logit regression method to model individual race finishing positions. We show that our modelling approach describes our data well, which allows for precise inferences about driver skill and constructor advantage. We conclude that Hamilton and Verstappen are the best drivers in the hybrid era, the top-three teams (Mercedes, Ferrari, and Red Bull) clearly outperform other constructors, and approximately 88 % of the variance in race results is explained by the constructor. We argue that this modelling approach may prove useful for sports beyond Formula One, as it creates performance ratings for independent components contributing to success.

Keywords: multilevel model; racing; ranking; sports performance (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/jqas-2022-0021 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:jqsprt:v:19:y:2023:i:4:p:273-293:n:4

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jqas/html

DOI: 10.1515/jqas-2022-0021

Access Statistics for this article

Journal of Quantitative Analysis in Sports is currently edited by Mark Glickman

More articles in Journal of Quantitative Analysis in Sports from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:jqsprt:v:19:y:2023:i:4:p:273-293:n:4