Determining Hall of Fame Status for Major League Baseball Using an Artificial Neural Network
Young William A,
Holland William S and
Weckman Gary R
Additional contact information
Young William A: Ohio University
Holland William S: Ohio University
Weckman Gary R: Ohio University
Journal of Quantitative Analysis in Sports, 2008, vol. 4, issue 4, 46
Abstract:
Election into Major League Baseball's (MLB) National Hall of Fame (HOF) often sparks debate among the fans, media, players, managers, and other members in the baseball community. Since the HOF members must be elected by a committee of baseball sportswriters and other entities, the prediction of a player's inclusion in the HOF is not trivial to model. There has been a lack of research in predicting HOF status based on a player's career statistics. Many models that were found in a literature search use linear models, which do not provide robust solutions for classification prediction in complex non-linear datasets. The multitude of possible combinations of career statistics is better suited for a non-linear model, like artificial neural networks (ANN). The objective of this research is to create an ANN model which can be used to predict HOF status for MLB players based on their career offensive and defensive statistics as well as the number of career end of the season awards. This research is limited to investigating players who are not pitchers. Another objective of this report is to give the audience of this particular journal an overview of ANNs.
Keywords: Major League Baseball; Hall of Fame; artificial neural networks (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.2202/1559-0410.1131 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:jqsprt:v:4:y:2008:i:4:n:4
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jqas/html
DOI: 10.2202/1559-0410.1131
Access Statistics for this article
Journal of Quantitative Analysis in Sports is currently edited by Mark Glickman
More articles in Journal of Quantitative Analysis in Sports from De Gruyter
Bibliographic data for series maintained by Peter Golla ().