Deviance Information Criteria for Model Selection in Approximate Bayesian Computation
Francois Olivier and
Laval Guillaume
Statistical Applications in Genetics and Molecular Biology, 2011, vol. 10, issue 1, 1-25
Abstract:
Approximate Bayesian computation (ABC) is a class of algorithmic methods in Bayesian inference using statistical summaries and computer simulations. ABC has become popular in evolutionary genetics and in other branches of biology. However, model selection under ABC algorithms has been a subject of intense debate during the recent years. Here, we propose novel approaches to model selection based on posterior predictive distributions and approximations of the deviance. We argue that this framework can settle some contradictions between the computation of model probabilities and posterior predictive checks using ABC posterior distributions. A simulation study and an analysis of a resequencing data set of human DNA show that the deviance criteria lead to sensible results in a number of model choice problems of interest to population geneticists.
Keywords: approximate Bayesian computation; model choice; expected deviance; information criterion; population genetic models (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1678 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:33
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1678
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().