QTL Mapping Using a Memetic Algorithm with Modifications of BIC as Fitness Function
Frommlet Florian,
Ljubic Ivana,
Arnardóttir Helga Björk and
Bogdan Malgorzata
Additional contact information
Frommlet Florian: Medical University Vienna
Ljubic Ivana: University Vienna
Bogdan Malgorzata: Wroclaw University of Technology
Statistical Applications in Genetics and Molecular Biology, 2012, vol. 11, issue 4, 26
Abstract:
The problem of locating quantitative trait loci (QTL) for experimental populations can be approached by multiple regression analysis. In this context variable selection using a modification of the Bayesian Information Criterion (mBIC) has been well established in the past. In this article a memetic algorithm (MA) is introduced to find the model which minimizes the selection criterion. Apart from mBIC also a second modification (mBIC2) is considered, which has the property of controlling the false discovery rate. Given the Bayesian nature of our selection criteria, we are not only interested in finding the best model, but also in computing marker posterior probabilities using all models visited by MA. In a simulation study MA (with mBIC and mBIC2) is compared with a parallel genetic algorithm (PGA) which has been previously suggested for QTL mapping. It turns out that MA in combination with mBIC2 performs best, where determining QTL positions based on marker posterior probabilities yields even better results than using the best model selected by MA. Finally we consider a real data set from the literature and show that MA can also be extended to multiple interval mapping, which potentially increases the precision with which the exact location of QTLs can be estimated.
Keywords: QTL mapping; model selection; modifications of BIC; memetic algorithm; posterior probability (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1515/1544-6115.1793 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:11:y:2012:i:4:n:2
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.1515/1544-6115.1793
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().