Comparison of statistical methods for finding network motifs
Albieri Vanna and
Didelez Vanessa ()
Additional contact information
Albieri Vanna: Statistics, Bioinformatics and Registry, Danish Cancer Society Research Center, Copenhagen, Denmark
Didelez Vanessa: School of Mathematics, University of Bristol University Walk, Bristol BS81TW, UK
Statistical Applications in Genetics and Molecular Biology, 2014, vol. 13, issue 4, 403-422
Abstract:
There has been much recent interest in systems biology for investigating the structure of gene regulatory systems. Such networks are often formed of specific patterns, or network motifs, that are interesting from a biological point of view. Our aim in the present paper is to compare statistical methods specifically with regard to the question of how well they can detect such motifs. One popular approach is by network analysis with Gaussian graphical models (GGMs), which are statistical models associated with undirected graphs, where vertices of the graph represent genes and edges indicate regulatory interactions. Gene expression microarray data allow us to observe the amount of mRNA simultaneously for a large number of genes p under different experimental conditions n, where p is usually much larger than n prohibiting the use of standard methods. We therefore compare the performance of a number of procedures that have been specifically designed to address this large p-small n issue: G-Lasso estimation, Neighbourhood selection, Shrinkage estimation using empirical Bayes for model selection, and PC-algorithm. We found that all approaches performed poorly on the benchmark E. coli network. Hence we systematically studied their ability to detect specific network motifs, pairs, hubs and cascades, in extensive simulations. We conclude that all methods have difficulty detecting hubs, but the PC-algorithm is most promising.
Keywords: Gaussian graphical models; Lasso; PC-algorithm; Shrinkage (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/sagmb-2013-0017 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:13:y:2014:i:4:p:20:n:2
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.1515/sagmb-2013-0017
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().