Protein domain hierarchy Gibbs sampling strategies
Neuwald Andrew F. ()
Additional contact information
Neuwald Andrew F.: Institute for Genome Sciences and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, BioPark II, Room 617, 801 West Baltimore St., Baltimore, MD 21201, USA
Statistical Applications in Genetics and Molecular Biology, 2014, vol. 13, issue 4, 497-517
Abstract:
Hierarchically-arranged multiple sequence alignment profiles are useful for modeling protein domains that have functionally diverged into evolutionarily-related subgroups. Currently such alignment hierarchies are largely constructed through manual curation, as for the NCBI Conserved Domain Database (CDD). Recently, however, I developed a Gibbs sampler that uses an approach termed statistical evolutionary dynamics analysis to accomplish this task automatically while, at the same time, identifying sequence determinants of protein function. Here I describe the statistical model and sampling strategies underlying this sampler. When implemented and applied to simulated protein sequences (which conform to the underlying statistical model precisely), these sampling strategies efficiently converge on the hierarchy used to generate the sequences. However, for real protein sequences the sampler finds alternative, nearly-optimal hierarchies for many domains, indicating a significant degree of ambiguity. I illustrate how both the nature of such ambiguities and the most robust (“consensus”) features of a hierarchy may be determined from an ensemble of independently generated hierarchies for the same domain. Such consensus hierarchies can provide reliably stable models of protein domain functional divergence.
Keywords: Markov chain Monte Carlo; computer algorithm; Bayesian statistics; protein sequence analysis (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/sagmb-2014-0008 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:13:y:2014:i:4:p:21:n:7
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.1515/sagmb-2014-0008
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().