Inexact Tensor Methods with Dynamic Accuracies
Nikita Doikov () and
Yurii Nesterov ()
Additional contact information
Nikita Doikov: Université catholique de Louvain, ICTEAM
Yurii Nesterov: Université catholique de Louvain, LIDAM/CORE, Belgium
No 3309, LIDAM Reprints CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE)
Abstract:
In this paper, we study inexact high-order Tensor Methods for solving convex optimization problems with composite objective. At every step of such methods, we use approximate solution of the auxiliary problem, defined by the bound for the residual in function value. We propose two dynamic strategies for choosing the inner accuracy: the first one is decreasing as 1/kp+1, where p ≥ 1 is the order of the method and k is the iteration counter, and the second approach is using for the inner accuracy the last progress in the target objective. We show that inexact Tensor Methods with these strategies achieve the same global convergence rate as in the error-free case. For the second approach we also establish local superlinear rates (for p ≥ 2), and propose the accelerated scheme. Lastly, we present computational results on a variety of machine learning problems for several methods and different accuracy policies.
Pages: 10
Date: 2024-01-01
Note: In: Proceedings of the 37th International Conference on Machine Learning, PMLR, 2020, vol. 119, p. 2577-2586
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cor:louvrp:3309
Access Statistics for this paper
More papers in LIDAM Reprints CORE from Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Alain GILLIS ().