Mathematical Entities without Objects. On Realism in Mathematics and a Possible Mathematization of (Non)Platonism: Does Platonism Dissolve in Mathematics?
Thierry Paul
European Review, 2021, vol. 29, issue 2, 253-273
Abstract:
By looking at three significant examples in analysis, geometry and dynamical systems, I propose the possibility of having two levels of realism in mathematics: the upper one, the one of entities; and a subordinated ground one, the one of objects. The upper level (entities) is more the one of ‘operations’, of mathematics in action, of the dynamics of mathematics, whereas the ground floor (objects) is more dedicated to culturally well-defined objects inherited from our perception of the physical or real world. I will show that the upper level is wider than the ground level, therefore foregrounding the possibility of having in mathematics entities without underlying objects. In the three examples treated in this article, this splitting of levels of reality is created directly by the willingness to preserve different symmetries, which take the form of identities or equivalences. Finally, it is proposed that mathematical Platonism is – in fine – a true branch of mathematics in order for mathematicians to avoid the temptation of falling into the Platonist alternative ‘everything is real’/‘nothing is real’.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:eurrev:v:29:y:2021:i:2:p:253-273_8
Access Statistics for this article
More articles in European Review from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().