Dynamic Tempered Transitions for Exploring Multimodal Posterior Distributions
Jeff Gill and
George Casella
Political Analysis, 2004, vol. 12, issue 4, 425-443
Abstract:
Multimodal, high-dimension posterior distributions are well known to cause mixing problems for standard Markov chain Monte Carlo (MCMC) procedures; unfortunately such functional forms readily occur in empirical political science. This is a particularly important problem in applied Bayesian work because inferences are made from finite intervals of the Markov chain path. To address this issue, we develop and apply a new MCMC algorithm based on tempered transitions of simulated annealing, adding a dynamic element that allows the chain to self-tune its annealing schedule in response to current posterior features. This important feature prevents the Markov chain from getting trapped in minor modal areas for long periods of time. The algorithm is applied to a probabilistic spatial model of voting in which the objective function of interest is the candidate's expected return. We first show that such models can lead to complex target forms and then demonstrate that the dynamic algorithm easily handles even large problems of this kind.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:12:y:2004:i:04:p:425-443_00
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().