A Text-As-Data Approach for Using Open-Ended Responses as Manipulation Checks
Jeffrey Ziegler
Political Analysis, 2022, vol. 30, issue 2, 289-297
Abstract:
Participants that complete online surveys and experiments may be inattentive, which can hinder researchers’ abilityto draw substantive or causal inferences. As such, many practitioners include multiple factualor instructional closed-ended manipulation checks to identify low-attention respondents. However, closed-ended manipulation checks are either correct or incorrect, which allows participants to more easily guess and it reduces the potential variation in attention between respondents. In response to these shortcomings, I develop an automatic and standardized methodology to measure attention that relies on the text that respondents provide in an open-ended manipulation check. There are multiple benefits to this approach. First, it provides a continuous measure of attention, which allows for greater variation between respondents. Second, it reduces the reliance on subjective, paid humans to analyze open-ended responses. Last, I outline how to diagnose the impact of inattentive workers on the overall results, including how to assess the average treatment effect of those respondents that likely received the treatment. I provide easy-to-use software in R to implement these suggestions for open-ended manipulation checks.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:polals:v:30:y:2022:i:2:p:289-297_9
Access Statistics for this article
More articles in Political Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().