EconPapers    
Economics at your fingertips  
 

Predicting Exporters with Machine Learning

Francesca Micocci and Armando Rungi

World Trade Review, 2023, vol. 22, issue 5, 584-607

Abstract: In this contribution, we exploit machine learning techniques to evaluate whether and how close firms are to become successful exporters. First, we train various algorithms using financial information on both exporters and non-exporters in France in 2010–2018. Thus, we show that it is possible to predict the distance non-exporters are from export status. In particular, we find that a Bayesian Additive Regression Tree with Missingness In Attributes (BART-MIA) performs better than other techniques with an accuracy of up to 0.90. Predictions are robust to changes in definitions of exporters and in the presence of discontinuous exporting activity. Eventually, we discuss how our exporting scores can be helpful for trade promotion, trade credit, and assessing aggregate trade potential. For example, back-of-the-envelope estimates show that a representative firm with just below-average exporting scores needs up to 44% more cash resources and up to 2.5 times more capital to get to foreign markets.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:wotrrv:v:22:y:2023:i:5:p:584-607_4

Access Statistics for this article

More articles in World Trade Review from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:wotrrv:v:22:y:2023:i:5:p:584-607_4