Production Equilibria in Vector Lattices
Monique Florenzano and
Valeriy Marakulin ()
No 1396, Econometric Society World Congress 2000 Contributed Papers from Econometric Society
Abstract:
The general purpose of this paper is to prove quasiequilibrium existence theorems for production economies with general consumption sets in an infinite dimensional commodity space, without assuming any monotonicity of preferences or free-disposal in production. The commodity space is a vector lattice commodity space whose topological dual is a sublattice of its order dual. We formulate two kinds of properness concepts for agents' preferences and production sets, which reduce to more classical ones when the commodity space is locally convex and the consumption sets coincide with the positive cone. Assuming properness allows for extension theorems of quasiequilibrium prices obtained for the economy restricted to some order ideal of the commodity space. As an application, the existence of quasiequilibrium in the whole economy is proved without any assumption of monotonicity of preferences or free-disposal in production.
Date: 2000-08-01
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://fmwww.bc.edu/RePEc/es2000/1396.pdf main text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:wc2000:1396
Access Statistics for this paper
More papers in Econometric Society World Congress 2000 Contributed Papers from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().