EconPapers    
Economics at your fingertips  
 

First and second-order optimality conditions for nonsmooth vector optimization using set-valued directional derivatives

Nguyen Dinh Tuan

Applied Mathematics and Computation, 2015, vol. 251, issue C, 300-317

Abstract: We investigate a nonsmooth vector optimization problem with a feasible set defined by a generalized inequality constraint, an equality constraint and a set constraint. Both necessary and sufficient optimality conditions of first and second-order for weak solutions and firm solutions are established in terms of Fritz-John–Lagrange multiplier rules using set-valued directional derivatives and tangent cones and second-order tangent sets. We impose steadiness and strict differentiability for first and second-order necessary conditions, respectively; stability and l-stability for first and second-order sufficient conditions, respectively. The obtained results improve or include some recent known ones. Several illustrative examples are also provided.

Keywords: Nonsmooth vector optimization; Optimality condition; Weak solution; Firm solution; Set-valued directional derivative (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300314015938
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:251:y:2015:i:c:p:300-317

DOI: 10.1016/j.amc.2014.11.061

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:251:y:2015:i:c:p:300-317