A multigrid preconditioned numerical scheme for a reaction–diffusion system
Samir Kumar Bhowmik
Applied Mathematics and Computation, 2015, vol. 254, issue C, 266-276
Abstract:
Reaction diffusion operators have been used to model many engineering and biological systems. In this study we consider a reaction diffusion system modeling various engineering and life science problems. There are many algorithms to approximate such mathematical models. Most of the algorithms are conditionally stable and convergent. For a big time step size a Krylov subspace type solver for such models converges slowly or oscillates because of the presence of the diffusion term. Here we study a multigrid preconditioned generalized minimal residual method (GMRES) for such a model. We start with a five point scheme for the spatial integration and a method of lines for the temporal integration of the system of PDEs. Then we implement a multigrid iterative algorithm for the full discrete model, and show some numerical results to demonstrate the dominance of the solver. We analyze the convergence rate of such a multigrid iterative preconditioning algorithm. Reaction diffusion systems arise in many mathematical models and thus this study has many applicabilities.
Keywords: Reaction–diffusion system; Gray Scot model; Predator prey model; Finite difference scheme; Multigrid solver (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300314017160
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:254:y:2015:i:c:p:266-276
DOI: 10.1016/j.amc.2014.12.062
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().