EconPapers    
Economics at your fingertips  
 

A search grid for parameter optimization as a byproduct of model sensitivity analysis

Jan Verwaeren, Pieter Van der Weeën and Bernard De Baets

Applied Mathematics and Computation, 2015, vol. 261, issue C, 8-27

Abstract: Inverse problem solving, i.e. the retrieval of optimal values of model parameters from experimental data, remains a bottleneck for modelers. Therefore, a large variety of (heuristic) optimization algorithms has been developed to deal with the inverse problem. However, in some cases, the use of a grid search may be more appropriate or simply more practical. In this paper an approach is presented to improve the selection of the grid points to be evaluated and which does not depend on the knowledge or availability of the underlying model equations. It is suggested that using the information acquired through a sensitivity analysis can lead to better grid search results. Using the sensitivity analysis information, a Gauss–Newton-like matrix is constructed and the eigenvalues and eigenvectors of this matrix are employed to transform naive search grids into better thought-out ones. After a theoretical analysis of the approach, some computational experiments are performed using a simple linear model, as well as more complex nonlinear models.

Keywords: Grid search; Parameter estimation; Sensitivity analysis; Sphere packing (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315003781
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:261:y:2015:i:c:p:8-27

DOI: 10.1016/j.amc.2015.03.064

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:261:y:2015:i:c:p:8-27