Solution to a system of real quaternion matrix equations encompassing η-Hermicity
Abdur Rehman,
Qing-Wen Wang and
Zhuo-Heng He
Applied Mathematics and Computation, 2015, vol. 265, issue C, 945-957
Abstract:
Let Hm×n be the set of all m × n matrices over the real quaternion algebra H={c0+c1i+c2j+c3k∣i2=j2=k2=ijk=−1,c0,c1,c2,c3∈R}. A∈Hn×n is known to be η-Hermitian if A=Aη*=−ηA*η,η∈{i,j,k} and A* means the conjugate transpose of A. We mention some necessary and sufficient conditions for the existence of the solution to the system of real quaternion matrix equations including η-Hermicity A1X=C1,A2Y=C2,YB2=D2,Y=Yη*,A3Z=C3,ZB3=D3,Z=Zη*,A4X+(A4X)η*+B4YB4η*+C4ZC4η*=D4,and also construct the general solution to the system when it is consistent. The outcome of this paper diversifies some particular results in the literature. Furthermore, we constitute an algorithm and a numerical example to comprehend the approach established in this treatise.
Keywords: Linear matrix equation; η-Hermitian solution; Quaternion matrix; Moore–Penrose inverse; Rank; General solution (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315007353
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:265:y:2015:i:c:p:945-957
DOI: 10.1016/j.amc.2015.05.104
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().