EconPapers    
Economics at your fingertips  
 

Higher order multi-step iterative method for computing the numerical solution of systems of nonlinear equations: Application to nonlinear PDEs and ODEs

Malik Zaka Ullah, S. Serra-Capizzano, Fayyaz Ahmad and Eman S. Al-Aidarous

Applied Mathematics and Computation, 2015, vol. 269, issue C, 972-987

Abstract: In the present study, we consider multi-step iterative method to solve systems of nonlinear equations. Since the Jacobian evaluation and its inversion are expensive, in order to achieve a better computational efficiency, we compute Jacobian and its inverse only once in a single cycle of the proposed multi-step iterative method. Actually the involved systems of linear equations are solved by employing the LU-decomposition, rather than inversion. The primitive iterative method (termed base method) has convergence-order (CO) five and then we describe a matrix polynomial of degree two to design a multi-step method. Each inclusion of single step in the base method will increase the convergence-order by three. The general expression for CO is 3s−1, where s is the number of steps of the multi-step iterative method. Computational efficiency is also addressed in comparison with other existing methods. The claimed convergence-rates proofs are established. The new contribution in this article relies essentially in the increment of CO by three for each added step, with a comparable computational cost in comparison with existing multi-steps iterative methods. Numerical assessments are made which justify the theoretical results: in particular, some systems of nonlinear equations associated with the numerical approximation of partial differential equations (PDEs) and ordinary differential equations (ODEs) are built up and solved.

Keywords: Multi-step; Iterative methods; Systems of nonlinear equations; Nonlinear partial differential equations; Nonlinear ordinary differential equations (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300315010188
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:269:y:2015:i:c:p:972-987

DOI: 10.1016/j.amc.2015.07.096

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:269:y:2015:i:c:p:972-987