EconPapers    
Economics at your fingertips  
 

A fifth-order finite volume weighted compact scheme for solving one-dimensional Burgers’ equation

Yan Guo, Yu-feng Shi and Yi-min Li

Applied Mathematics and Computation, 2016, vol. 281, issue C, 172-185

Abstract: In the present paper, a high-order finite volume compact scheme is proposed to solve one dimensional Burgers’ equation. The nonlinear advective terms are computed by the fifth-order finite volume weighted upwind compact scheme, in which the nonlinear weighted essentially non-oscillatory weights are coupled with lower order compact stencils. The diffusive terms are discretized by using the finite volume six-order Padé scheme. The strong stability preserving third-order Runge–Kutta time discretizations is used in this work. Numerical results are compared with the exact and some existing numerical solutions to demonstrate the essentially non-oscillatory and high resolution of the proposed method. The numerical results are shown to be more accurate than some numerical results given in the literature.

Keywords: Burgers’ equation; Finite volume method; Compact schemes; Weighted essentially non-oscillatory scheme; Padé schemes (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316300704
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:281:y:2016:i:c:p:172-185

DOI: 10.1016/j.amc.2016.01.061

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:281:y:2016:i:c:p:172-185