EconPapers    
Economics at your fingertips  
 

Some classes of equations of discrete type with harmonic singular operator and convolution

Pingrun Li and Guangbin Ren

Applied Mathematics and Computation, 2016, vol. 284, issue C, 185-194

Abstract: In this paper, we study four classes of discrete type equations with harmonic singular operator and convolution. Such equations are turned into boundary value problems for analytic function with discontinuous coefficients by discrete Fourier transform. The general solutions and the conditions of solvability are obtained in class h by our method. Thus, this paper generalizes the theory of classical equations of convolution type.

Keywords: Equations of convolution type; Harmonic singular operator; Fourier transform; Clifford analysis (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316301965
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:284:y:2016:i:c:p:185-194

DOI: 10.1016/j.amc.2016.03.004

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:284:y:2016:i:c:p:185-194