Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system
Amin Zarei and
Saeed Tavakoli
Applied Mathematics and Computation, 2016, vol. 291, issue C, 323-339
Abstract:
Based on Lorenz system, a new four-dimensional quadratic autonomous hyper-chaotic attractor is presented in this paper. It can generate double-wing chaotic and hyper-chaotic attractors with only one equilibrium point. Several properties of the new system are investigated using Lyapunov exponents spectrum, bifurcation diagram and phase portraits. Using the center manifold and normal form theories, the local dynamics, the stability and Hopf bifurcation at the equilibrium point are analyzed. To obtain the ellipsoidal ultimate bound, the ultimate bound of the proposed system is theoretically estimated using Lagrange multiplier method, Lagrangian function and local maximizer point. By properly choosing P and Q matrices, an estimation of the ultimate bound region, as a function of the Lagrange coefficient, is obtained using local maximizer point and reduced Hessian matrix. To demonstrate the evolution of the bifurcation and to show the ultimate bound region, numerical simulations are provided.
Keywords: Hyper-chaotic attractor; Hopf bifurcation; Ultimate bound; Lagrange multiplier (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316304611
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:291:y:2016:i:c:p:323-339
DOI: 10.1016/j.amc.2016.07.023
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().