EconPapers    
Economics at your fingertips  
 

Remarks on the Graovac–Ghorbani index of bipartite graphs

Darko Dimitrov, Barbara Ikica and Riste Škrekovski

Applied Mathematics and Computation, 2017, vol. 293, issue C, 370-376

Abstract: The atom–bond connectivity (ABC) index is a well-known degree-based molecular structure descriptor with a variety of chemical applications. In 2010 Graovac and Ghorbani introduced a distance-based analog of this index, the Graovac–Ghorbani (GG) index, which yielded promising results when compared to analogous descriptors. In this paper, we investigate the structure of graphs that maximize and minimize the GG index. Specifically, we show that amongst all bipartite graphs, the minimum GG index is attained by a complete bipartite graph, while the maximum GG index is attained by a path or a cycle-like graph; the structure of the resulting graph depends on the number of vertices. Through the course of the research, we also derive an asymptotic estimate of the GG index of paths. In order to obtain our results, we introduce a normalized version of the GG index and call it the normalized Graovac–Ghorbani (NGG) index. Finally, we discuss some related open questions as a potential extension of our work.

Keywords: Molecular structure descriptor; Molecular graph; Extremal graphs; Atom–bond connectivity index; Graovac–Ghorbani index (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300316305422
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:293:y:2017:i:c:p:370-376

DOI: 10.1016/j.amc.2016.08.047

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:293:y:2017:i:c:p:370-376