EconPapers    
Economics at your fingertips  
 

Choosability with union separation of planar graphs without cycles of length 4

Jianfeng Hou and Hongguo Zhu

Applied Mathematics and Computation, 2020, vol. 386, issue C

Abstract: For a graph G and a positive integer k, a k-list assignment of G is a function L on the vertices of G such that for each vertex v ∈ V(G), |L(v)| ≥ k. Let s be a nonnegative integer. Then L is a (k,k+s)-list assignment of G if |L(u)∪L(v)|≥k+s for each edge uv. If for each (k,k+s)-list assignment L of G, G admits a proper coloring φ such that φ(v) ∈ L(v) for each v ∈ V(G), then we say G is (k,k+s)-choosable. This refinement of choosability is called choosability with union separation by Kumbhat, Moss and Stolee, who showed that all planar graphs are (3, 11)-choosable. In this paper, we prove that every planar graph without cycles of length 4 is (3,6)-choosable.

Keywords: Choosability; Planar graph; C4-free; Discharge (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320304367
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304367

DOI: 10.1016/j.amc.2020.125477

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s0096300320304367