EconPapers    
Economics at your fingertips  
 

On the efficient implementation of PVM methods and simple Riemann solvers. Application to the Roe method for large hyperbolic systems

Ernesto Pimentel-García, Carlos Parés, Manuel J. Castro and Julian Koellermeier

Applied Mathematics and Computation, 2021, vol. 388, issue C

Abstract: Polynomial Viscosity Matrix (PVM) methods can be considered as approximations of the Roe method in which the absolute value of the Roe matrix appearing in the numerical viscosity is replaced by the evaluation of the Roe matrix at a chosen polynomial that approximates the absolute value function. They are in principle cheaper than the Roe method since the computation and the inversion of the eigenvector matrix is not necessary. In this article, an efficient implementation of the PVM based on polynomials that interpolate the absolute value function at some points is presented. This implementation is based on the Newton form of the polynomials. Moreover, many numerical methods based on simple Riemann solvers (SRS) may be interpreted as PVM methods and thus this implementation can be also applied to them: the close relation between PVM methods and simple Riemann solvers is revisited here and new shorter proofs based on the classical interpolation theory are given. In particular, Roe method can be interpreted both as a SRS and as a PVM method so that the new implementation can be used. This implementation, that avoids the computation and the inversion of the eigenvector matrix, is called Newton Roe method. Newton Roe method yields the same numerical results of the standard Roe method, with less runtime for large PDE systems. Numerical results for two-layer Shallow Water Equations and Quadrature-Based Moment Equations show a significant speedup if the number of equations is large enough.

Keywords: PVM methods; Simple Riemann solvers; Roe method; Finite volume methods; Path-conservative methods; Large hyperbolic systems (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320305002
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:388:y:2021:i:c:s0096300320305002

DOI: 10.1016/j.amc.2020.125544

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:388:y:2021:i:c:s0096300320305002