Simulation of two-phase incompressible fluid flow in highly heterogeneous porous media by considering localization assumption in multiscale finite volume method
Fatemeh Mazlumi,
Mehdi Mosharaf-Dehkordi and
Morteza Dejam
Applied Mathematics and Computation, 2021, vol. 390, issue C
Abstract:
Two-phase incompressible fluid flow through highly heterogeneous porous media is simulated by using the Multiscale Finite Volume (MsFV) method. Effects of the localization assumption on the accuracy of the MsFV are investigated by comparing the results associated with different boundary conditions of local problems producing the basis functions. The total number of six boundary conditions of two general types, including Dirichlet and Dirichlet-Neumann types, are compared. For the former, the linear, variable (reduced), and step-type boundary conditions are considered and a modified variable boundary condition is proposed. For the latter, a basic and a step-type Neumann-Dirichlet boundary condition are suggested. To estimate the errors in the MsFV solutions for continuous problems, a heterogeneous two-dimensional problem with continuous permeability field is designed and solved analytically. Synthetic two-scale permeability fields as well as highly heterogeneous random fields are used to assess the accuracy of the MsFV solutions with different localization schemes, in comparison with the fine-scale reference solution. Numerical results indicate that the modified variable boundary condition, with a proper value of its weighting factor, can generally produce the most accurate results, when compared with the other localization schemes.
Keywords: Multi-scale finite volume method; Localization assumption; Modified variable boundary condition; Basis function; Heterogeneity; Continuous problem (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320306032
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:390:y:2021:i:c:s0096300320306032
DOI: 10.1016/j.amc.2020.125649
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().