EconPapers    
Economics at your fingertips  
 

On the truncated Hausdorff moment problem under Sobolev regularity conditions

Werner Zellinger and Bernhard A. Moser

Applied Mathematics and Computation, 2021, vol. 400, issue C

Abstract: We study the problem of approximating the recovery of a probability distribution on the unit interval from its first k moments. As main result we obtain an upper bound on the L1 reconstruction error under the regularity assumption that the log-density function has square-integrable derivatives up to some natural order r>1. Our bound is of order O(k−r). A comparative study relates our findings to alternative conditions on the distributions.

Keywords: Truncated Hausdorff moment problem; Moment-based distribution approximation; Total variation distance; Maximum entropy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321001053
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:400:y:2021:i:c:s0096300321001053

DOI: 10.1016/j.amc.2021.126057

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:400:y:2021:i:c:s0096300321001053