Approximation methods for system of linear Fredholm integral equations of second kind
Samiran Chakraborty,
Kapil Kant and
Gnaneshwar Nelakanti
Applied Mathematics and Computation, 2021, vol. 403, issue C
Abstract:
In this paper, Galerkin, multi-Galerkin methods and their iterated versions are developed for solving the system of linear Fredholm integral equations of the second kind for both smooth and weakly singular algebraic and logarithmic type kernels. Here first we develop the theoretical framework for Galerkin and iterated Galerkin methods to solve the system of linear second kind Fredholm integral equations using piecewise polynomials as basis functions and then obtain the superconvergence results similar to that of single linear Fredholm integral equation of the second kind. We show that iterated Galerkin approximation yields better convergence rates than Galerkin approximate solution. Further we enhance these results by using multi-Galerkin and iterated-multi-Galerkin methods and show that the iterated multi-Galerkin approximation yields improved superconvergence rates over iterated Galerkin and multi-Galerkin approximations. The theoretical results are justified by the numerical results.
Keywords: System of Fredholm integral equations; Galerkin method; Multi-Galerkin method; Smooth kernel; Weakly singular kernel (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321002630
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:403:y:2021:i:c:s0096300321002630
DOI: 10.1016/j.amc.2021.126173
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().