EconPapers    
Economics at your fingertips  
 

Using gradient directions to get global convergence of Newton-type methods

Daniela di Serafino, Gerardo Toraldo and Marco Viola

Applied Mathematics and Computation, 2021, vol. 409, issue C

Abstract: The renewed interest in Steepest Descent (SD) methods following the work of Barzilai and Borwein [2] has driven us to consider a globalization strategy based on SD, which is applicable to any line-search method. In particular, we combine Newton-type directions with scaled SD steps to have suitable descent directions. Scaling the SD directions with a suitable step length makes a significant difference with respect to similar globalization approaches, in terms of both theoretical features and computational behavior. We apply our strategy to Newton’s method and the BFGS method, with computational results that appear interesting compared with the results of well-established globalization strategies devised ad hoc for those methods.

Keywords: Newton-type methods; Globalization strategies; Steepest descent step (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320305671
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300320305671

DOI: 10.1016/j.amc.2020.125612

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:409:y:2021:i:c:s0096300320305671