EconPapers    
Economics at your fingertips  
 

Fully discretized methods based on boundary value methods for solving diffusion equations

Jingjun Zhao, Xingzhou Jiang and Yang Xu

Applied Mathematics and Computation, 2022, vol. 418, issue C

Abstract: Based on boundary value methods, we establish a kind of new fully discretized methods for solving one-dimensional diffusion equations. The proposed methods are composed of a series of full discretizations with multi-time-level and multi-space-level. For the full discretizations, we give the local truncation error. Moreover, we analyze the stability of the proposed methods and obtain the corresponding error estimate. Meanwhile, we make some numerical experiments to show that the proposed methods are stable and own high accuracy.

Keywords: Boundary value method; Diffusion equation; Stability; Convergence (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321009310
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:418:y:2022:i:c:s0096300321009310

DOI: 10.1016/j.amc.2021.126848

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:418:y:2022:i:c:s0096300321009310