EconPapers    
Economics at your fingertips  
 

Importance of Numerical Implementation and Clustering Analysis in Force-Directed Algorithms for Accurate Community Detection

Alessandra M.M.M. Gouvêa, Nicolás Rubido, Elbert E.N. Macau and Marcos G. Quiles

Applied Mathematics and Computation, 2022, vol. 431, issue C

Abstract: Real-world networks show community structures – groups of nodes that are densely intra-connected and sparsely inter-connected to other groups. Nevertheless, Community Detection (CD) is non-trivial, since identifying these groups of nodes according to their local connectivity can hold many plausible solutions, leading to the creation of different methods. In particular, CD has recently been achieved by Force-Directed Algorithms (FDAs), which originally were designed as a way to visualize networks. FDAs map the network nodes as particles in a D-dimensional space that are affected by forces acting in accordance to the connectivity. However, the literature on FDA-based methods for CD has grown in parallel from the classical methods, leaving several open questions, such as how accurately FDAs can recover communities compared to classical methods. In this work, we start to fill these gaps by evaluating different numerical implementations of 5 FDA methods and different clustering analyses on state-of-the-art network benchmarks – including networks with or without weights and networks with a hierarchical organisation. We also compare these results with 8, well-known, classical CD methods. Our findings show that FDA methods can achieve higher accuracy than classical methods, albeit their effectiveness depends on the chosen setting – with optimisation techniques leading over numerical integration and distance-based clustering algorithms leading over density-based ones. Overall, our work provides detailed information for any researcher aiming to apply FDAs for community detection.

Keywords: Complex Networks; Community Detection; Force-Directed Algorithms; Clustering Analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322003848
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322003848

DOI: 10.1016/j.amc.2022.127310

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322003848