EconPapers    
Economics at your fingertips  
 

Iteratively regularized Gauss–Newton type methods for approximating quasi–solutions of irregular nonlinear operator equations in Hilbert space with an application to COVID–19 epidemic dynamics

M.M. Kokurin, M.Yu. Kokurin and A.V. Semenova

Applied Mathematics and Computation, 2022, vol. 431, issue C

Abstract: We investigate a class of iteratively regularized methods for finding a quasi–solution of a noisy nonlinear irregular operator equation in Hilbert space. The iteration uses an a priori stopping rule involving the error level in input data. In assumptions that the Frechet derivative of the problem operator at the desired quasi–solution has a closed range, and that the quasi–solution fulfills the standard source condition, we establish for the obtained approximation an accuracy estimate linear with respect to the error level. The proposed iterative process is applied to the parameter identification problem for a SEIR–like model of the COVID–19 pandemic.

Keywords: Nonlinear equation; Iterative regularization; Closed range; Accuracy estimate; Parameter identification; Epidemic dynamics (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322003861
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322003861

DOI: 10.1016/j.amc.2022.127312

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:431:y:2022:i:c:s0096300322003861