List injective coloring of planar graphs
Jiansheng Cai,
Wenwen Li,
Wenjing Cai and
Matthias Dehmer
Applied Mathematics and Computation, 2023, vol. 439, issue C
Abstract:
An injective coloring is a vertex coloring (not necessarily proper) such that any two vertices sharing a common neighbor receive distinct colors. A graph G is called injectively k-choosable, if for any color list L with admissible colors on V(G) of size k, there is an injective coloring φ such that φ(v)∈L(v) whenever v∈V(G). The list injective chromatic number, denoted by χil(G), is the least k for which G is injectively k-choosable. We focus on the study of list injective coloring on planar graphs which has disjoint 5−-cycles and show that χil(G)≤Δ+3 if Δ≥18 and χil(G)≤Δ+4 if Δ≥12.
Keywords: Plane graphs; List injective coloring; Disjoint 5−-cycles; Maximum degree (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322006932
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:439:y:2023:i:c:s0096300322006932
DOI: 10.1016/j.amc.2022.127631
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().