Input-output consistency in integrate and fire interconnected neurons
Petr Lansky,
Federico Polito and
Laura Sacerdote
Applied Mathematics and Computation, 2023, vol. 440, issue C
Abstract:
Interspike intervals describe the output of neurons. Signal transmission in a neuronal network implies that the output of some neurons becomes the input of others. The output should reproduce the main features of the input to avoid a distortion when it becomes the input of other neurons, that is input and output should exhibit some sort of consistency. In this paper, we consider the question: how should we mathematically characterize the input in order to get a consistent output? Here we interpret the consistency by requiring the reproducibility of the input tail behaviour of the interspike intervals distributions in the output. Our answer refers to a system of interconnected neurons with stochastic perfect integrate and fire units. In particular, we show that the class of regularly-varying vectors is a possible choice to obtain such consistency. Some further necessary technical hypotheses are added.
Keywords: Target neuron model; Perfect integrate and fire; First passage time; Interspike intervals; Multivariate point process; Time and space structure; Regular variation; Heavy tails; Asymptotic independence (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322007032
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:440:y:2023:i:c:s0096300322007032
DOI: 10.1016/j.amc.2022.127630
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().