On the exact and population bi-dimensional reproduction numbers in a stochastic SVIR model with imperfect vaccine
M. Gamboa,
M. López-García and
M.J. Lopez-Herrero
Applied Mathematics and Computation, 2024, vol. 468, issue C
Abstract:
We aim to quantify the spread of a direct contact infectious disease that confers permanent immunity after recovery, within a non-isolated finite and homogeneous population. Prior to the onset of the infection and to prevent the spread of this disease, a proportion of individuals was vaccinated. But the administered vaccine is imperfect and can fail, which implies that some vaccinated individuals get the infection when being in contact with infectious individuals. We study the evolution of the epidemic process over time in terms of a continuous-time Markov chain, which represents a general SIR model with an additional compartment for vaccinated individuals. In our stochastic framework, we study two bi-dimensional variables recording infection events, produced by a single infectious individual or by the whole infected group, taking into account if the newly infected individual was previously vaccinated or not. Theoretical schemes and recursive algorithms are derived in order to compute joint probability mass functions and factorial moments for these random variables. We illustrate the applicability of our techniques by means of a set of numerical experiments.
Keywords: Stochastic epidemic model; Markov chain; Basic reproduction number; Imperfect vaccine (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300323006951
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:468:y:2024:i:c:s0096300323006951
DOI: 10.1016/j.amc.2023.128526
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().