EconPapers    
Economics at your fingertips  
 

Linear programming with infinite, finite, and infinitesimal values in the right-hand side

Marco Cococcioni and Lorenzo Fiaschi

Applied Mathematics and Computation, 2025, vol. 486, issue C

Abstract: The goal of this work is to propose a new type of constraint for linear programs: inequalities having infinite, finite, and infinitesimal values in the right-hand side. Because of the nature of such constraints, the feasible region polyhedron becomes more complex, since its vertices can be represented by non-purely finite coordinates, and so is the optimum of the problem. The introduction of such constraints enlarges the class of linear programs, where those described by finite values only become a special case. To tackle optimization problems over such polyhedra, there is a need for an ad-hoc solving routine: this work proposes a generalization of the Simplex algorithm, which is able to solve common linear programs as corner cases. Finally, the study presents three relevant applications that can benefit from the use of these novel constraints, making the use of the extended Simplex algorithm essential. For each application, an exemplifying benchmark is solved, showing the effectiveness of the proposed routine.

Keywords: Linear programming; Scientific computing with infinite/finite/infinitesimal values; Infinite/infinitesimal values in the right-hand side; Grossone methodology (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300324005058
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:486:y:2025:i:c:s0096300324005058

DOI: 10.1016/j.amc.2024.129044

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:486:y:2025:i:c:s0096300324005058