Optimal portfolio and retirement decisions with costly job switching options
Jongbong An,
Junkee Jeon and
Takwon Kim
Applied Mathematics and Computation, 2025, vol. 491, issue C
Abstract:
In this paper, we consider the utility maximization problem of an agent regarding optimal consumption-investment, job-switching strategy, and the optimal early retirement date. The agent can switch between two jobs or job categories at any time before retirement, but incurs a cost when switching to a position offering higher labor income. The agent's utility maximization involves a combination of stochastic control for consumption and investment, switching control for job-switching, and optimal stopping for early retirement decisions, making it a non-trivial and highly challenging problem. By utilizing the dynamic programming principle, we can derive the nonlinear Hamilton-Jacobi-Bellman (HJB) equation in the form of a system of variational inequalities with obstacle constraints, which arises from the agent's optimization problem. We employ guess and verify methods based on economic intuition to derive the closed-form solution of this HJB equation and demonstrate, through a verification theorem, that this solution aligns with the solution to the agent's utility maximization problem.
Keywords: Utility maximization; Job switching with costs; Early retirement; Consumption and investment; Optimal switching; Optimal stopping; Stochastic control; HJB equation (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300324006763
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:491:y:2025:i:c:s0096300324006763
DOI: 10.1016/j.amc.2024.129215
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().