A modulus-based framework for weighted horizontal linear complementarity problems
Francesco Mezzadri
Applied Mathematics and Computation, 2025, vol. 495, issue C
Abstract:
We develop a modulus-based framework to solve weighted horizontal linear complementarity problems (WHLCPs). First, we reformulate the WHLCP as a modulus-based system whose solution, in general, is not unique. We characterize the solutions by discussing their sign pattern and how they are linked to one another. After this analysis, we exploit the modulus-based formulation to develop new solution methods. In particular, we present a non-smooth Newton iteration and a matrix splitting method for solving WHLCPs. We prove the local convergence of both methods under some assumptions. Finally, we solve numerical experiments involving symmetric and non-symmetric matrices. In this context, we compare our approaches with a recently proposed smoothing Newton's method. The experiments include problems taken from the literature. We also provide numerical insights on relevant parts of the algorithms, such as convergence, attraction basin, and starting iterate.
Keywords: Weighted linear complementarity problem; Modulus-based methods; Non-smooth Newton's method; Matrix splitting methods (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300325000402
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:495:y:2025:i:c:s0096300325000402
DOI: 10.1016/j.amc.2025.129313
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().