Chance-constrained two-stage fractional optimization for planning regional energy systems in British Columbia, Canada
Xiong Zhou,
Guohe Huang,
Hua Zhu,
Jiapei Chen and
Jinliang Xu
Applied Energy, 2015, vol. 154, issue C, 663-677
Abstract:
In this study, a chance-constrained two-stage fractional optimization (CTFO) method is proposed for planning regional energy systems in the province of British Columbia, Canada. Through simultaneously integrating two-stage stochastic programming (TSP), chance-constrained programming (CCP), and mixed-integer linear programming (MILP) techniques into a linear fractional programming (LFP) framework, CTFO can effectively tackle multiobjective and capacity-expansion issues, as well as uncertainties described as probability distributions in the constraints and objectives. Based on the developed CTFO method, a chance-constrained two-stage fractional regional energy model (CTFO-REM) is developed in this study for supporting energy management in the province of British Columbia. Conflicts between environmental protection that maximizes the renewable energy resource utilization and economic development that minimizes the system cost can be effectively addressed through the CTFO-REM model without setting a factor for each objective. The results also indicate that the CTFO-REM model can facilitate dynamic analysis of the interactions among efficiency, policy scenarios, economic cost, and system reliability.
Keywords: Two-stage stochastic programming; Linear fractional programming; Energy systems; Multiple objectives; Uncertainty (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915006236
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:154:y:2015:i:c:p:663-677
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.05.013
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().