EconPapers    
Economics at your fingertips  
 

Bioenergy and the city – What can urban forests contribute?

F. Kraxner, K. Aoki, G. Kindermann, S. Leduc, F. Albrecht, John Liu () and Y. Yamagata

Applied Energy, 2016, vol. 165, issue C, 990-1003

Abstract: Bioenergy plays an important role in mitigating dangerous climate change and will therefore most likely have to further expand substantially. With 50% of the global population living in urban areas, cities are transforming into hotspots for future sustainable energy systems in the context of a low-carbon society. Bioenergy feedstock from urban forests could contribute substantially to low-carbon energy supply, yet urban ecosystems also provide other services that have to be balanced against future energy needs. This study conducts a geo-spatial analysis of urban forests with respect to its potential of increasing feedstock production for urban bioenergy generation. At the same time, social and environmental constraints are considered and co-benefits discussed. In order to test the wider applicability of the methodology, the Vienna Woods Biosphere Reserve is chosen as a case study to determine the feedstock potential for local bioenergy provided to Viennese households. The theoretical biomass potential is modeled using biophysical growth and yield tables for individual tree species and then compared to the existing production area using GIS tools. Results show that the biomass use within the biosphere reserve can be increased by about 60% without violating any national or international law that protects multiple ecosystem services provided by the reserve, nor sustainability criteria of forest management. This indicates a high potential of peri-urban forest ecosystems to contribute to urban resilience – i.e. with respect to energy security and emissions reduction. The study concludes that urban forests require sensible management in order to minimize conflicts of multiple environmental, economic and social uses of the area.

Keywords: Urban bioenergy; Urban energy resilience; Urban forest; Biomass potential; GIS analysis; Sustainable forest management (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916000076
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:165:y:2016:i:c:p:990-1003

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.12.121

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:165:y:2016:i:c:p:990-1003