EconPapers    
Economics at your fingertips  
 

Energy-efficient biogas reforming process to produce syngas: The enhanced methane conversion by O2

Xuejing Chen, Jianguo Jiang, Kaimin Li, Sicong Tian and Feng Yan

Applied Energy, 2017, vol. 185, issue P1, 687-697

Abstract: We report an energy-efficient biogas reforming process with high and stable methane conversions by O2 presence. During this biogas reforming process, the effects of various O2 concentrations in biogas on initial conversions and stability at various temperatures on a Ni/SiO2 catalyst were detailed investigated. In addition, theoretical energy consumption and conversions were calculated based on the Gibbs energy minimization method to compare with experimental results. Carbon formation and sintering during the reforming process were characterized by thermal gravity analysis, the Brunauer-Emmett-Teller method, X-ray diffraction, and high-resolution transmission electron microscopy to investigate the feasibility of applying this process to an inexpensive nickel catalyst. The results showed that 5% O2 in biogas improved the CH4 conversion and stability of biogas reforming. The enhancement of stability was attributed to the inhibited sintering, our first finding, and the reduced carbon deposition at the same time, which sustained a stable conversion of CH4, and proved the applicability of base Ni catalyst to this process. Higher O2 concentrations (⩾10%) in biogas resulted in severe decrease in CO2 conversion and greater H2O productivity. Our proposed biogas reforming process, with a high and stable conversion of CH4, reduced energy input, and the applicability to inexpensive base metal catalyst, offers a good choice for biogas reforming with low O2 concentrations (⩽5%) to produce syngas with high energy efficiency.

Keywords: Syngas; Biogas; Dry reforming; Energy efficiency; O2 effect (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916315641
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p1:p:687-697

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.10.114

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:687-697