EconPapers    
Economics at your fingertips  
 

Iterative multi-task learning for time-series modeling of solar panel PV outputs

Tahasin Shireen, Chenhui Shao, Hui Wang, Jingjing Li, Xi Zhang and Mingyang Li

Applied Energy, 2018, vol. 212, issue C, 654-662

Abstract: Time-series modeling of PV output for solar panels can help solar panel owners understand the power systems’ time-varying behavior and be prepared for the load demand. The time-series forecast/prediction can become challenging due to many missing observations or a lack of historical records that are not sufficient to establish statistical models. Increasing PV measurement frequency over a longer period increases the cost in the detection of the PV fluctuation. This paper proposes an efficient approach to iterative multi-task learning for time series (MTL-GP-TS) that improves prediction of the PV output without increasing measurement efforts by sharing the information among PV data from multiple similar solar panels. The proposed iterative MTL-GP-TS model learns/imputes unobserved or missing values in a dataset of time series associated with the solar panel of interest to predict the PV trend. Additionally, the method improves and generalizes the traditional multi-task learning for Gaussian Process to the learning of both global trend and local irregular components in time series. A real-world case study demonstrated that the proposed method could result in substantial improvement of predictions over conventional approaches. The paper also discusses the selection of parameters and data sources when implementing the proposed algorithm.

Keywords: Multi-task learning; Time series; Solar panels; Prediction; Forecasting (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917317737
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:654-662

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.12.058

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:654-662