Robust ensemble learning framework for day-ahead forecasting of household based energy consumption
Mohammad H. Alobaidi,
Fateh Chebana and
Mohamed A. Meguid
Applied Energy, 2018, vol. 212, issue C, 997-1012
Abstract:
Smart energy management mandates a more decentralized energy infrastructure, entailing energy consumption information on a local level. Household-based energy consumption trends are becoming important to achieve reliable energy management for such local power systems. However, predicting energy consumption on a household level poses several challenges on technical and practical levels. The literature lacks studies addressing prediction of energy consumption on an individual household level. In order to provide a feasible solution, this paper presents a framework for predicting the average daily energy consumption of individual households. An ensemble method, utilizing information diversity, is proposed to predict the day-ahead average energy consumption. In order to further improve the generalization ability, a robust regression component is proposed in the ensemble integration. The use of such robust combiner has become possible due to the diversity parameters provided in the ensemble architecture. The proposed approach is applied to a case study in France. The results show significant improvement in the generalization ability as well as alleviation of several unstable-prediction problems, existing in other models. The results also provide insights on the ability of the suggested ensemble model to produce improved prediction performance with limited data, showing the validity of the ensemble learning identity in the proposed model. We demonstrate the conceptual benefit of ensemble learning, emphasizing on the requirement of diversity within datasets, given to sub-ensembles, rather than the common misconception of data availability requirement for improved prediction.
Keywords: Household energy consumption; Ensemble learning; Robust regression; Day-ahead energy forecasting (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917317695
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:997-1012
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.12.054
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().