EconPapers    
Economics at your fingertips  
 

Cooling demand reduction with nighttime natural ventilation to cool internal thermal mass under harmonic design-day weather conditions

Mingtong Li, Xiong Shen, Wentao Wu, Kristen Cetin, Finn Mcintyre, Liangzhu Wang, Lixing Ding, Daniel Bishop, Larry Bellamy and Meng Liu

Applied Energy, 2025, vol. 379, issue C, No S0306261924023304

Abstract: Cooling demand is steadily increasing across different climate zones due to global warming. A potential solution for cooling demand reduction is applying nighttime natural ventilation to cool internal thermal mass. However, a simplified and accurate modelling framework to assess the technique is still missing. The goal of the study is to build that framework integrated with a validated internal thermal mass model and apply the framework to quantify the cooling demand reduction potential in a space with different thermal mass and envelope configurations and in different climate zones. Results show that using Granite as internal thermal mass is three times more effective than concrete to reduce peak cooling load. Adding too much internal thermal mass can create adverse effects on cooling load reduction. The optimum thickness of internal thermal mass is between 28 and 45 mm. Envelope construction also has an influence on the performance of nighttime cooling. Applying the technique in buildings with lightweight structures reduces peak cooling load by 35.9% more than heavyweight structures. As heavyweight structures delay the release of the daily absorbed heat and cause higher indoor air temperatures at night. The two belts between the Tropic of Cancer and 60 degrees north latitude, and between the Tropic of Capricorn and 45 degrees south latitude are suitable for nighttime natural ventilation of internal thermal mass, achieving the annual cooling demand reduction above 1.25 kWh m−2. In Dessert climate zones, the technique exhibits an extraordinary potential to reduce cooling demand, up to 6.67 kWh m−2 per year.

Keywords: Night cooling; Passive building technique; Energy efficiency; Building simulation; Climate zones (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924023304
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023304

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.124947

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023304