High temperature heat pump with dual uses of cooling and heating for industrial applications
Yixiu Dong,
Hatef Madani,
Xiaoxue Kou and
Ruzhu Wang
Applied Energy, 2025, vol. 379, issue C, No S0306261924023456
Abstract:
The temperature difference between evaporating and condensing side of cascade high temperature heat pump (CHTHP) can be large. However, its heating coefficient of performance (COP) is not ideal due to the performance attenuation brought by large temperature lift. If both heating and cooling sides can be utilized, the whole COP will be greatly improved. In this work, a CHTHP prototype is established, along with three application scenarios, specifically dairy processing, liquor processing, and deep dehumidification, which simultaneously have cooling and heating demands consistent with the operating range of the unit. The experimental results indicate that the CHTHP prototype can supply cooling as low as 2 °C and heating up to 120 °C with comprehensive COP over 2.58, being more than 45.8 % higher than single heating system, showing impressive performance in combined cooling and heating (CCH) for industrial processes. Through the joint investigation of heat pump and application scenarios, it is revealed that the comprehensive performance of CHTHP can surpass conventional approach of using two separate heat pumps to provide cooling and heating respectively when the ratio of heating to cooling demand is high. In addition, the performance of CCH system can be further enhanced by optimizing corresponding process parameters in different scenarios. Based on the excellent performance of CHTHP in CCH and its practical industrial applications, this work will maximize the effectiveness of high temperature heat pump in the electrificaiton of industrial thermal energy consumption.
Keywords: Cascade high temperature heat pump; Combined cooling and heating; Pasteurization; CIP cleaning water production; Spirits distillation and condensation; Rotary desiccant wheel deep dehumidification (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924023456
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023456
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124962
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().